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Abstract

A technique of refining connected topological group topologies on Abelian groups is developed.
It is proved that every connected separable Abelian torsion-free topological group admits a strictly
finer connected separable topological group topology. (© 1998 Elsevier Science B.V.

1991 Math. Subj. Class.: 54H11, 54D05, 22A05, 54A25

1. Introduction

Let 2 be a topological (or topological group) property. The following general prob-
lem was considered in {2, 4, 5, 12, 13] for various properties Z.

Problem 1.1. Ler G be a topological group satisfying &. Does there exists a strictly
finer topological group topology on G still satisfying 2?

In [4], the property & under consideration is pseudocompactness. It is shown there
that an Abelian pseudocompact group G admits a strictly finer pseudocompact topolog-
ical group (TG) topology under some additional restrictions (for example, it suffices
to assume that G is a non-metrizable torsion group). A strengthening of compact TG
topologies to countably compact TG topologies is considered in [2, 5]. The problem
of refining locally compact group topologies was investigated in [12, 13].

The problem of refining connected topologies in the class of topological spaces was
investigated in [8, 9]. The second of these articles presents a construction of a maximal
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connected Hausdorff topology on the reals. It is still an open problem whether there
exists a maximal connected Tikhonov space of cardinality greater than 1.

A starting point of the present investigation is the article [10] containing a construc-
tion of a second countable connected TG topology on the additive group of reals which
is strictly finer than the usual one. One more construction of a connected topological
group refiniment of the topology on the reals is given in [1]. We consider connected
TG topologies on Abelian groups. The main result of the paper is Theorem 4.5 which
states that every separable connected Abelian torsion-free group admits a strictly finer
separable connected TG topology. To prove Theorem 4.5, we present the necessary
auxiliary facts in Section 4 the most important of which is Proposition 4.2 which also
contains a proof of the main result.

The problem of refining connected group topologies on torsion groups will be con-
sidered in a forthcoming paper.

2. Terminology and notation

We use, respectively, N, Z, R and T to denote the set of non-negative integers and
Abelian groups of integers, reals and the circle group. The set of positive integers is
denoted by N*. The symbol ¢ stands for the cardinality of continuum, ¢ = 2%,

The weight, density and cellularity of a space X are denoted by w(X), d(X) and
c(X), respectively. The closure of a subset S of a space X is ¢/ xS or simply ¢/S.
A regular closed subset of a space X is a set of the form ¢/ U with U open in X.

We denote the subgroup of a group G generated by a subset DCG by (D).
A subgroup H of a group G is called pure [14] if nG N H = nH for each n € NT.
The cardinality of a set 4 is |4].

In what follows, all groups are assumed to be Abelian. We consider only Hausdorff
topological groups.

3. Preliminary facts and results

The following notion was introduced and studied in [7].

Definition 3.1. A topological group G is called No-bounded if it can be covered by
countably many translations of any neighborhood of the identity.

By Corollary 1 of [7], a topological group G is Ro-bounded iff it is topologically
isomorphic to a subgroup of a Cartesian product of second countable groups. Every
separable group and every group of countable cellularity is Ng-bounded.

Lemma 3.2. Let G be an Ng-bounded torsion-free group with |G| = A>Rg and H a
subgroup of G, |H| < A. Then for every non-empty open subset U of G there exists
an element g € U such that (g) " H = {0¢}.
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Proof. Let U be a neighborhood of the identity in G. Since translations preserve the
cardinality, we have |[U| = A. Forall m e N* and h€ H put Ky, = {g € U: mg =
h}. If the conclusion of the lemma fails then U = |J{Kym: h € H, m € N1}. Since,
|H x NT| < %, one can find that » € H and m € N such that |K} | > 2. Let g; and
g» be distinct elements of Ky ,,. Then mg, = h = mg,, whence m(g; — ¢g2) = 0g. This
contradicts our assumption that G is torsion-free. [

The same reasoning applies to prove the following slight generalization of
Lemma 3.2.

Corollary 3.3. Let t(G) be the torsion-subgroup of an uncountable Ry-bounded topo-
logical group G and suppose that |G/tG| = |G|. If U is a non-empty open subset of
G and H is a subgroup of G with |H| < |G| then there is g € U with {g)NH = {0g}.

The result below is a special case of Theorem 3 of [15].

Lemma 3.4. Let X be a space satisfying w(X) < ¢ and ¢(X) < No. Then the family
RC(X) of all reqular closed subsets of X has cardinality not greater than c.

4. Main results

We prove the following theorem here. To avoid trivialities, the group G below must
not be a singleton.

Theorem 4.1. Let G be a connected Abelian torsion-free group satisfying w(G) < ¢
and ¢(G) < Wy. Then G admits a strictly finer connected topological group topology
satisfying the same cardinal restrictions.

A proof of this result still requires certain auxiliary facts. We start with a proposition
generalizing Claim 2.11 of [1].

Proposition 4.2. Let G be a dense disconnected subspace of the product X x Y of
connected spaces such that p(G) = X, where p:X x Y — X is the projection. Then
there exists a closed subset F of X x Y disjoint from G such that p(F) has a non-
empty interior. In fact, F = ¢l Oy N ¢l O, for some open disjoint subsets Oy, O, of
X x Y which cover G.

Proof. Since G is dense in X x Y and disconnected, one can find disjoint open sets
0, and O, in X x Y so that GCO; U O,. Note that X x ¥ = ¢/ 0y U c/O;. Put
F =cl0O,NclO,. The sets G and F are disjoint because G is covered by O; and O;.

Let x € X \ p(F) be an arbitrary point. Then p~'(x) N F = @ and we claim that
either p~'(x)C ¢/ Oy or p~'(x)C cl 0. Indeed, otherwise the equality

') = (p7 @) N 0N U(pT (x) N el O2)
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would give us a partition of p~!(x) into two disjoint clopen subsets, which contradicts
the connectedness of the space p~'(x) = Y.
For a subset O C X x Y, define

P(0)=X\ p(X x Y\ O0).
It is clear that p*(0) = {x € X: p~!(x) C O}. Let us verify the following inclusion:
X\ p(F)C p'(cl 01) U p*(cl 02). (1)

Let x € X \ p(F). Then either p~'(x)Cc/ Oy or p~!(x)Ccl O,, whence either
x € p*(cl 0y) or x € p*(cl O;), which proves (1).

Since the projection p is open, both sets p“(c/ O;) and p*(c! O,) are closed in X.
It is easy to see that these sets are disjoint. Indeed, if x € p*(c/ O)) N p*(cl O,), then
p l(x)CclOyNcl Oy = F. Since p(G) = X, there exists y € ¥ with (x,y) € G. But
then (x,v) € GNF # (), a contradiction.

Note that p*(c/ O)) # X # p*(cl O,), otherwise either ¢/O; = X x Y or ¢l O; =
X x Y which is impossible. Since X is connected, we conclude that

X # pH(el 01y U p¥(cl Oy).

Therefore, (1) implies that the non-empty open set X \ (p*(c/ O1) U p*(cl 0y)) is
contained in p(F'). This proves the proposition. [

In what follows we shall say that a space X is ccc if it satisfies ¢(X) < Ry. According
to [3] a space Y is called productively ccc if X x Y is ccc for every ccc space X. The
following result can be found in [3, Ch. 7]. We give a short proof of it for the sake
of completeness.

Lemma 4.3. A product of a ccc space and a separable space is also ccc, so every
separable space is productively ccc.

Proof. Let X be a ccc space and Y a separable one. Denote by S = {y,; n € N*} a
countable dense subset of Y. Suppose we are given an uncountable family y of non-
empty open subsets of the product X x Y. Without loss of generality, one can assume
that every element ¥ € y is of the form W = U x V for some open sets U CX and
VCY. Let {W, = Uy x Vy:a < w1} be a subfamily of y with W, # Wz whenever
a # f. Since, S is dense in ¥ and countable, there exists » € N* such that the set
A= {2 <o:y, € V,} is uncountable. The fact that X is ccc implies that U,NUp # 0
for some distinct a, § € A. Then W, N Wg # O for these « and B. The latter means that
X x Y does not contain uncountable disjoint families of open sets. [

Proof of Theorem 4.1. The idea of our proof is to construct a discontinuous homo-
morphism A of G to the circle group T in such a way that the subgroup

G* = {(x,h(x)): x € G}
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of G x T with the induced topology will be dense in G x T and connected. It is
clear that every dense subgroup G* of G x T satisfies the inequalities w(G*) < ¢ and
c(G*) < Ny because of Lemma 4.3 and the fact that a dense subspace of a ccc space
is also ccc.

The restriction of the projection p: G x T — G to G* is a continuous injective
homomorphism of G* onto G, but # = p [ G* is not a homeomorphism (otherwise A
would be continuous).

Consider the weakest topological group topology on G which makes the homomor-
phism (n)~!: G — G* continuous. In other words, identify the group G with G* by
means of the isomorphism n. Then, we will show that this gives us a strictly finer
connected group topology on G satisfying the same cardinal restrictions.

We start with a construction of the homomorphism 2 : G — T. Denote by #
the family of all closed subsets F' of the product G x T which have the form F =
¢l Oy Nl O, for some open sets Oy, O; in G x T and satisfy the condition Int p(F) #
@ (Int stands for interior). Lemma 3.4 implies that |#| < ¢. Let {F,: x < ¢} be an
enumeration of #. Suppose that we have constructed a set Xz = {x,: y < f} € G for
some f < ¢. Denote by Hy the subgroup of G generated by the set X3, Hg = (X). The
group G is cce, and hence is Ro-bounded [7]. Being connected and non-trivial, G is of
cardinality at least ¢. Applying Lemma 3.2, we can pick a point xg € Int p(F) \ Hp
so that

(xp) N Hy = {0} 2)

Repeat this procedure for every B < c. It gives us a set X = {xz: f < ¢}. Our
construction implies that xg € p(Fp) for each § < ¢, so one can define a function
f:X — T so that (xp, f(xp)) € Fp for all f<c.

Note that the set Gr(f) = {(x, f(x)): x € X} is dense in I = G x T. Indeed, the
set Fy =clUNclU = clU belongs to # for each non-empty open subset U of I1
and Gr(f) intersects all the sets Fy,. Since the space II is regular, we conclude that
Gr(f) is dense in II.

The condition (2) of our recursive construction implies that (X) = @, (x) is a free
Abelian group with the generating set X. Therefore, f extends to a homomorphism
f:(X) — T. Since the group T is divisible, one can extend f to a homomorphism
h: G — T [14]. Consider the group G* mentioned in the beginning of the proof:

G* = {(x,h(x)): x € G} CII.

The group G* contains the set Gr(f), and hence is dense in II. It remains to show
that G* is connected. Assume the contrary and apply Proposition 4.2 to find an element
F € # with FNG* = 0. Then Gr(f)NF = @, which contradicts the fact that Gr(f)
intersects all members of %.

Thus, G* is a dense connected subgroup of IT and we can introduce a strictly finer
connected topological group topology on G using the epimorphism p [ G*:G* - G.
This completes the proof. [
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Remark 4.4. One can generalize Theorem 4.1 substituting the condition that G is
torsion-free by |G/t(G)| 2 ¢, where #(G) denotes the torsion-subgroup of G. This
generalization requires just the use of Corollary 3.3.

Theorem 4.5. Let G be a connected separable Abelian torsion-free group. Then G
admits a strictly finer connected separable topological group topology.

Now we cannot directly apply the construction in the proof of Theorem 4.1, because
the resulting dense subgroup G* of IT = G x T need not be separable (at least, the
authors have not been able to prove that for a separable group G, every dense subgroup
G* of I1 with p(G*) = G is separable). We need, therefore, two lemmas more. The
first of them is a simple algebraic fact.

Lemma 4.6. Let H be a countable subgroup of a torsion-free group G. There exists
a countable pure subgroup L of G with H CL.

Proof. For n€N™ and g€ G, denote by p(g,n) an element of G satisfying np(g,n) =
g. If it does not exist, we simply put p(g,n) = Og. Define an increasing sequence
HyCH, CH, C--- of countable subgroups of G in the following way. Put Hy = H.
If a countable subgroup H; of G has been defined for some & € N*, we put

X, =H,U{p(g,n): g€ H,, neNT} and Hip = (X).

It is clear that L = | J, . Hx is a countable subgroup of G satisfying nG N L = nL for
each n € N, Therefore, L is pure. [

Lemma 4.7. Let G be an uncountable separable torsion-free topological group. There
exist a countable subgroup K of G and a (discontinuous) homomorphism g of K to
the circle group T such that the group {(x,q(x)): x € K} is dense in the product
ON=G6xT.

Proof. Let S be a countable dense subset of G. Put H = (S). By Lemma 4.6 there is
a countable pure subgroup L of G containing 4. The quotient group G/L is obviously
torsion-free. Denote by n the quotient homomorphism of G onto G/L and choose a
countable independent subset ¥ = {y,: n € N*} of the group P = G/L, that is, a set
with the following property:

if kyy) +--- + koyn = Op for some nky,... .k, € N*, then by =--- =k, = 0.

Let {t,: n € N} be a countable dense subset of T. Define a function f:¥Y — T
by f(ys) = t, for each n € N*. Since, Y is an independent subset of P, f extends
to a homomorphism g : Ky — T, where Ko = (¥). Put K = 171(Ky) and g = gm.
Obviously, K is a subgroup of G and [K| = |Kp| - |L| = RNo. It remains to show that
the subgroup {(x,q(x)): x € K} is dense in II.
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Let O = U x V be a non-empty open subset of 1. There is an element ¢, € V.
Choose x, € K with n(x,) = y,. Then ¢~'(t,) 27" (y») = x,+L. The set x,+L being
dense in G, there exists x € (x, +L)NU. Thus, x € K and (x,¢(x)) = (x,1,) € 0. [J

Proof of Theorem 4.5. Since G is non-trivial and connected, the cardinality of G is at
least ¢. By Lemma 4.7, there exist a countable subgroup K of G and a homomorphism
¢:K — T such that the set D = {(x,¢(x)): x € K} is dense in [T = G x T.

Since ¢(G) < d(X) < Ry and w(G) < 29%) = ¢ (see [11, Theorem 2.3()] or [6,
Theorem 1.5.6]), one can apply the construction used in the proof of Theorem 4.1 and
define a homomorphism 4:G — T satisfying the following conditions:

(1) AT K =g;

(2) the subgroup G* = {(x,h(x)): x € G} of IT intersects every non-empty closed
subset F of II having the form F = ¢/ U Necl V for some open subsets U, ¥ of IT and
satisfying Int p(F) # (, where p:Il — G is the projection.

From (1) it follows that G* contains a countable dense subgroup D, and hence is
separable. From (2) and Proposition 4.2 it follows that G* is connected. Since, the
graph G* of the homomorphism 4 is dense in IT, we conclude that 4 is discontinuous.
Therefore, the group topology

t= {p(0): O is open in G*}

on G is strictly finer than the original topology of G. Clearly, the group (G,1) is
connected and separable. ]

The following result illustrates an application of Theorem 4.1.

Corollary 4.8. Let G be a connected dense torsion-free subgroup of a Cartesian prod-
uct [,c Ga where each G, is a separable group and |A] < ¢. Then G admits a
strictly finer connected topological group topology.

Proof. Put IT = [],., G.. We have w(G,) < 29 for each « € 4 [6, Theorem
1.5.6], whence w(II) < ¢ and w(G) < w(IT) < c¢. Furthermore, since all the factors are
separable, we conclude that ¢(IT) < Ny [6, Corollary 2.3.18]. Being dense in [I, the
group G is also ccc. The use of Theorem 4.1 completes the proof. O

We conclude with the following problems.

Problem 4.9. Does a connected ccc Abelian torsion-free group admit a strictly finer
connected topological group topology?

Problem 4.10. If G is a metrizable connected Abelian torsion-free group, does there
exist a strictly finer connected topological group topology on G?
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