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Abstract 

A technique of refining connected topological group topologies on Abelian groups is developed. 
It is proved that every connected separable Abelian torsion-free topological group admits a strictly 
finer connected separable topological group topology. (~) 1998 Elsevier Science B.V. 

1991 Math. Subj. Class.: 54Hll, 54D05, 22A05, 54A25 

I.  Introduction 

Let ~ be a topological (or topological group) property. The following general prob- 

lem was considered in [2, 4, 5, 12, 13] for various properties ~ .  

Problem 1.1. Let  G be a topological group satisfying ~ .  Does there exists a strictly 

finer topological group topology on G still satisfying ~ ?  

In [4], the property 2~ under consideration is pseudocompactness. It is shown there 

that an Abelian pseudocompact group G admits a strictly finer pseudocompact topolog- 

ical group (TG) topology under some additional restrictions (for example, it suffices 

to assume that G is a non-metrizable torsion group). A strengthening of  compact TG 
topologies to countably compact TG topologies is considered in [2, 5]. The problem 

of  refining locally compact group topologies was investigated in [12, 13]. 
The problem of  refining connected topologies in the class o f  topological spaces was 

investigated :in [8, 9]. The second of  these articles presents a construction of  a maximal 
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connected Hausdorff topology on the reals. It is still an open problem whether there 
exists a maximal connected Tikhonov space of cardinality greater than 1. 

A starting point of  the present investigation is the article [I0] containing a construc- 
tion of a second countable connected TG topology on the additive group of reals which 
is strictly finer than the usual one. One more construction of a connected topological 
group refiniment of the topology on the reals is given in [1]. We consider connected 
TG topologies on Abelian groups. The main result of  the paper is Theorem 4.5 which 
states that every separable connected Abelian torsion-free group admits a strictly finer 
separable connected TG topology. To prove Theorem 4.5, we present the necessary 
auxiliary facts in Section 4 the most important of  which is Proposition 4.2 which also 
contains a proof of the main result. 

The problem of refining connected group topologies on torsion groups will be con- 
sidered in a forthcoming paper. 

2. Terminology and notation 

We use, respectively, N, Z, ~ and Y to denote the set of  non-negative integers and 

Abelian groups of integers, reals and the circle group. The set of  positive integers is 
denoted by N +. The symbol c stands for the cardinality of continuum, c = 2 ¢°. 

The weight, density and cellularity of  a space X are denoted by w(X),  d (X)  and 
c(X),  respectively. The closure of  a subset S of a space X is c l x S  or simply clS. 
A regular closed subset of a space X is a set of  the form cl U with U open in X. 

We denote the subgroup of a group G generated by a subset DC_G by (D). 
A subgroup H of a group G is called pure [14] if  nG N H  = n H  for each n E N +. 

The cardinality of a set A is IAI. 
In what follows, all groups are assumed to be Abelian. We consider only Hausdorff 

topological groups. 

3. Preliminary facts and results 

The following notion was introduced and studied in [7]. 

Definition 3.1. A topological group G is called R0-bounded if it can be covered by 
countably many translations of any neighborhood of the identity. 

By Corollary 1 of [7], a topological group G is ~0-bounded iff it is topologically 
isomorphic to a subgroup of a Cartesian product of  second countable groups. Every 

separable group and every group of countable cellularity is ~0-bounded. 

Lemma 3.2. Let G be an Ro-bounded torsion-free group with [GI : ,~ > ~0 and H a 

subgroup o f  G, IH[ < 2. Then for  every non-empty open subset U o f  G there exists 

an element g E U such that (g) N H = {06}. 



M.G. Tka(enko, L.M. Villegas-Silva/Journal of" Pure and Applied Algebra 124 (1998) 281-288 283 

Proofl Let U be a neighborhood of  the identity in G. Since translations preserve the 

cardinality, we have IU[ = )~. For all m E N + and h c H put Kh, m = {g C U: mg = 
h}. If  the conclusion of  the lemma fails then U = U{Kh, m: h E H, m E N+}.  Since, 

IH x N+I < )., one can find that h E H and m E N + such that IKh, ml _> 2. Let gl and 
g2 be distinct elements of  Kh,m. Then mgl = h = my2, whence m(gl - g2) = Oa. This 
contradicts our assumption that G is torsion-free. [] 

The same reasoning applies to prove the following slight generalization o f  

Lemma 3.2. 

Corollary 3.3. Let t(G) be the torsion-subgroup o f  an uncountable ~o-bounded topo- 

logical group G and suppose that IG/tG I = IGI. I f  U is a non-empty open subset o f  
G a n d H  is a subgroup o f  G with IHI < !G[ then there is g E U with ( g ) N H  = {0c).  

The result below is a special case of  Theorem 3 of  [15]. 

Lemma 3.4. Let X be a space satisfying w(X)  < c and c (X)  < ~o. Then the family 

RC(X)  o f  all regular closed subsets o f  X has cardinality not greater than c. 

4. Main results 

We prove the following theorem here. To avoid trivialities, the group G below must 

not be a singleton. 

Theorem 4.1. Let G be a connected Abelian torsion-free group satisfying w(G) < ¢ 
and c(G) < ~o. Then G admits a strictly finer connected topological group topology 

satisfying the same cardinal restrictions. 

A proof o f  this result still requires certain auxiliary facts. We start with a proposition 

generalizing Claim 2.11 of  [1]. 

Proposition 4.2. Let G be a dense disconnected subspace o f  the product X x Y of  

connected spaces such that p(G) = X,  where p : X  x Y ~ X is the projection. Then 

there exists a closed subset F of  X x Y disjoint f rom G such that p (F)  has a non- 

empty interior. In fact,  F = cl 01 n cl 02 for some open disjoint subsets 01, 02 o f  

X x Y which cover G. 

Proof. Since G is dense in X x Y and disconnected, one can find disjoint open sets 

Oa and 02 in X × Y so that GCC_O1U02. Note that X x Y = cl01 Uc102.  Put 

F = cl O~ N cl 02. The sets G and F are disjoint because G is covered by Ol and 02. 
Let x E X \ p (F)  be an arbitrary point. Then p - l ( x )  N F = q~ and we claim that 

either p-~(x)  C_ cl 01 or p - l ( x )  C cl 02. Indeed, otherwise the equality 

p - l  (x) = ( p - l ( x )  n cl 01 ) U ( p - l ( x )  N cl 02) 
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would give us a partition o f  p-~(x)  into two disjoint clopen subsets, which contradicts 
the connectedness o f  the space p - l ( x )  ~ Y. 

For a subset O _CX x Y, define 

p~(O) = x \ p (X x Y \ o). 

It is clear that p # ( O ) =  {x E X: p-l(x)C_ O}. Let us verify the following inclusion: 

X \ p (F)  C p#(clOl ) U p#(cl02). (1) 

Let x E X \ p(F).  Then either p - l ( x ) C c l 0 1  or p- l (x )C_cl02 ,  whence either 

x E p~(cl01) or x E p#(cl02),  which proves (1). 

Since the projection p is open, both sets p#(clOl)  and p#(cl02)  are closed in X. 

It is easy to see that these sets are disjoint. Indeed, i f x  E p#(c l01)N p#(cl02),  then 

p - l ( x )  _C clO1 A cl02 = F. Since p(G) = X,  there exists y E Y with (x,y)  E G. But 

then (x, y)  E G N F ¢ (3, a contradiction. 

Note that p#(cl01)  ¢ X ¢ p#(cI02), otherwise either clOl = X x Y or cl02 = 
X x Y which is impossible. Since X is connected, we conclude that 

X ¢ p#(c lO, )U p#(clO2). 

Therefore, (1) implies that the non-empty open set X \ ( p # ( c l 0 i ) U  p#(cl02))  is 

contained in p(F).  This proves the proposition. D 

In what follows we shall say that a space X is ccc if it satisfies c(X)  < ~o. According 

to [3] a space Y is called productively ccc i f X  x Y is ccc for every ccc space X. The 

following result can be found in [3, Ch. 7]. We give a short proof of  it for the sake 

o f  completeness. 

Lemma 4.3. A product o f  a ccc space and a separable space is also ccc, so every 
separable space is productively ccc. 

Proof.  Let X be a ccc space and Y a separable one. Denote by S = {yn: n E N +} a 
countable dense subset o f  Y. Suppose we are given an uncountable family 7 o f  non- 
empty open subsets o f  the product X x Y. Without loss o f  generality, one can assume 

that every element W E 7 is o f  the form W -- U x V for some open sets U C X  and 

V C Y .  Let {W~ = U~ x V~:~ < coa} be a subfamily of  7 with W~ ¢ Wt~ whenever 
¢ ft. Since, S is dense in Y and countable, there exists n E N+ such that the set 

A = {~ < col: yn E V~} is uncountable. The fact that X is ccc implies that U~ N U~ ¢ 0 

for some distinct ~, fl E A. Then W~ A W~ ¢ 0 for these ~ and/~. The latter means that 
X x Y does not contain uncountable disjoint families o f  open sets. 

Proof of Theorem 4.1. The idea o f  our proof is to construct a discontinuous homo- 

morphism h of  G to the circle group Y in such a way that the subgroup 

c *  = {(x,h(x)) :  x e o }  
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of  G x T with the induced topology will be dense in G x T and connected. It is 

clear that every dense subgroup G* of  G x ]- satisfies the inequalities w(G*) < c and 

c(G*) <_ ~o because of  Lemma 4.3 and the fact that a dense subspace o f  a ccc space 

is also ccc. 
The restriction of  the projection p : G x T ~ G to G* is a continuous injective 

homomorphism of  G* onto G, but 7r = p I G* is not a homeomorphism (otherwise h 

would be continuous). 
Consider the weakest topological group topology on G which makes the homomor- 

phism (~)-1:  G -* G* continuous. In other words, identify the group G with G* by 

means o f  the isomorphism ~z. Then, we will show that this gives us a strictly finer 

connected group topology on G satisfying the same cardinal restrictions. 

We start with a construction of  the homomorphism h : G ~ T. Denote by 

the family of  all closed subsets F of  the product G x T which have the form F --- 

cl 01 • cl 02 for some open sets O1, 02 in G x T and satisfy the condition Int p (F)  
13 (Int stands for interior). Lemma 3.4 implies that 1~1 _< c. Let {F~: ~ < ¢) be an 
enumeration of  ,~-. Suppose that we have constructed a set X/~ = {x~.: 7 </~} C G for 
some /3 < c. Denote by H/~ the subgroup of  G generated by the set X/~, H~ = (X/~). The 

group G is ccc, and hence is bt0-bounded [7]. Being connected and non-trivial, G is of  

cardinality at least c. Applying Lemma 3.2, we can pick a point x~ E Int p(F~) \ H# 

so that 

(x/~) AH/~ = {0t4}. (2) 

Repeat this procedure for every fl < ¢. It gives us a set X = {x/~: /3 < ¢}. Our 

construction implies that x~ E p(F~) for each /~ < c, so one can define a function 

f :  X ---* T so that (x~,f(x~)) E Ft~ for all fl < c. 
Note that the set Gr( f )  = {(x , f (x)) :  x E X }  is dense in /7 = G × Y. Indeed, the 

set F u  = cl U • cl U = cl U belongs to ~ for each non-empty open subset U o f / 7  

and Gr( f )  intersects all the sets Fu.  Since the space H is regular, we conclude that 

Gr( f )  is dense in /7 .  
The condition (2) of  our recursive construction implies that (X) = (~zcx(X) is a free 

Abelian group with the generating set X. Therefore, f extends to a homomorphism 

)~: (X) ~ T. Since the group Y is divisible, one can extend J~ to a homomorphism 

h: G ~ Y [14]. Consider the group G* mentioned in the beginning of  the proof: 

G* = {(x,h(x)): x E G} C II. 

The group G* contains the set G r ( f ) ,  and hence is dense in /7 .  It remains to show 

that G* is connected. Assume the contrary and apply Proposition 4.2 to find an element 

F E ~ with F fq G* = 0. Then Gr( f )  M F = 0, which contradicts the fact that Gr( f )  

intersects all members o f  g .  
Thus, G* is a dense connected subgroup o f / 7  and we can introduce a strictly finer 

connected topological group topology on G using the epimorphism p r G * : G *  ---* G. 

This completes the proof. [] 
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Remark  4.4. One can generalize Theorem 4.1 substituting the condition that G is 

torsion-free by [G/t(G)[ > c, where t(G) denotes the torsion-subgroup of  G. This 
generalization requires just the use of  Corollary 3.3. 

Theorem 4.5. Let G be a connected separable AbeIian torsion-free group. Then G 

admits a strictly finer connected separable topological group topology. 

Now we cannot directly apply the construction in the proof o f  Theorem 4.1, because 

the resulting dense subgroup G* o f / 7  = G x ~- need not be separable (at least, the 

authors have not been able to prove that for a separable group G, every dense subgroup 

G* o f / 7  with p(G*) = G is separable). We need, therefore, two lemmas more. The 

first o f  them is a simple algebraic fact. 

Lemma 4.6. Let H be a countable subgroup o f  a torsion-free group G. There exists 

a countable pure subgroup L o f  G with H C_ L. 

Proof.  For nE IN-- and gEG,  denote by p(g,n)  an element o f  G satisfying np(g,n)  = 

g. I f  it does not exist, we simply put p(g,n)  = 0G. Define an increasing sequence 

H0 C H1 C_ H2 C .  • • of  countable subgroups of  G in the following way. Put /4o = H. 

If  a countable subgroup Hk of  G has been defined for some k E N +, we put 

X k = H k U { p ( g , n ) : g E H k ,  n E N + }  and H k + l = ( X k ) .  

It is clear that L = Ukc~Hk is a countable subgroup of  G satisfying nG NL = nL for 

each n E N +. Therefore, L is pure. 

Lemma 4.7. Let G be an uncountable separable torsion-free topological group. There 

exist a countable subgroup K o f  G and a (discontinuous) homomorphism q o f  K to 

the circle group T such that the group {(x,q(x)): x E K} is dense in the product 

/ 7 = G x Y .  

Proof.  Let S be a countable dense subset of  G. Put H = (S). By Lemma 4.6 there is 

a countable pure subgroup L of  G containing H. The quotient group G/L is obviously 

torsion-free. Denote by n the quotient homomorphism of  G onto G/L and choose a 

countable independent subset Y = {yn: n E N +} of  the group P = G/L, that is, a set 

with the following property: 

if  klyl  + ""  + knyn = Op for some n, k l , . . . , k ,  C N +, then kl . . . . .  k, = 0. 

Let {tn: n E N + } be a countable dense subset o f  T. Define a function f : Y ---+ 1J- 
by f ( y ~ )  = t~ for each n E N +. Since, Y is an independent subset o f  P, f extends 

to a homomorphism g:Ko  ~ ][, where K0 = (Y). Put K = n- l (Ko)  and q = gn. 
Obviously, K is a subgroup of  G and I K] = IK0] • ILl = 1%. It remains to show that 

the subgroup {(x, q(x)): x E K} is dense in /7. 
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Let O = U x V be a non-empty open subset o f / 7 .  There is an element tn E V. 
Choose xn C K with n(Xn) = y,.  Then q-l(t~)D_ ~ - l ( y , )  = x~+L. The set x~+L being 
dense in G, there exists x E (xn + L ) N  U. Thus, x E K and (x,q(x)) = (x,t ,)  C O. [] 

Proof of Theorem 4.5. Since G is non-trivial and connected, the cardinality of  G is at 
least c. By Lemma 4.7, there exist a countable subgroup K of  G and a homomorphism 
q:K -+ ~ such that the set D = {(x,q(x)): x E K} is dense i n / 7  = G × T. 

Since e(G) < d(X)  < ~o and w(G) <_ 2 d(x) = c (see [11, Theorem 2.3(i)] or [6, 
Theorem 1.5.6]), one can apply the construction used in the proof  of  Theorem 4.1 and 
define a homomorphism h:G --+ ~ satisfying the following conditions: 

(1) h I K = q ;  

(2) the subgroup G* = {(x,h(x)): x E G} of  H intersects every non-empty closed 
subset F of  H having the form F = cl U N cl V for some open subsets U, V o f / 7  and 
satisfying Int p (F)  # (O, where p : I I  --~ G is the projection. 

From (1) it follows that G* contains a countable dense subgroup D, and hence is 

separable. From (2) and Proposition 4.2 it follows that G* is connected. Since, the 
graph G* of  the homomorphism h is dense in /7 ,  we conclude that h is discontinuous. 
Therefore, the group topology 

= (p (O) :  O is open in G * )  

on G is strictly finer than the original topology of  G. Clearly, the group (G, v) is 
connected and separable. 

The following result illustrates an application of  Theorem 4.1. 

Corollary 4.8. Let G be a connected dense torsion-free subgroup o f  a Cartesian prod- 
uct I I~A  G~, where each Go is a separable group and ]A[ _< ¢. Then G admits a 
strictly finer connected topological group topology. 

ProoL Put H = I-I~A G~. We have w(G~) <_ 2 d(6~ for each ~ E A [6, Theorem 
1.5.6], whence w(H) _< c and w(G) <_ w(Fl) < c. Furthermore, since all the factors are 
separable, we conclude that c(H) <_ 1% [6, Corollary 2.3.18]. Being dense in / / ,  the 
group G is also ccc. The use of  Theorem 4.1 completes the proof. [] 

We conclude with the following problems. 

Problem 4.9. Does a connected ccc Abelian torsion-free group admit a strictly finer 
connected topological group topology? 

Problem 4.10. I f  G is a metrizable connected Abelian torsion-free group, does there 
exist a strictly finer connected topological group topology on G? 
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